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u Chapter 1

I Executive Summary
I

This is the final report for the project Research in Continuous Speech Recognition, sponsored
by the Defense Advanced Research Agency (DARPA) and monitored by ONR under Contract
No. N00014-85-C-0279. The report covers the period 18 January 1988 to 30 September5 1990; an earlier report covered the first three years of the project [331.

The objective of this basic research is to develop accurate and detailed mathematical
models of the fundamental units of speech (phonemes) for the purpose of large-vocabulary
continuous speech recognition. The important goals of this work are to achieve the highest
possible word recognition accuracy in continuous speech and to develop methods for the
rapid adaptation of phonetic models to the voice of a new speaker.

The research during the past three years can be categorized into three broad topics:

developing better speech models to improve recognition accuracy, exploring new techniques
for speaker-independent training, and developing speaker adaptation techniques that allow
the system to be used by new speakers with a minimum amount of training. The research

performed under each of these areas is summarized below.

Our primary goal in this project has been to increase speech recognition accuracy. The
fundamental means by which we can improve accuracy is by improving our model of speech
in some way. Therefore, we have explored several modifications of the speech model and
techniques for parameter estimation. The result has been that, during the course of this three
year effort, we have reduced the word error rate for speech recognition by a factor of 4,
as measured on a standard DARPA corpus. For example, when using speaker-dependent
models, the word error has decreased from 7.5% in 1987 to 1.7%. In speaker-independent
recognition, the error rate has decreased from 16% to 3.9%. The current error rates for
speaker-dependent and speaker-independent recognition are the lowest reported thus far for
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this corpus. Details of how we achieved this large improvement in performance can be
found in Chapter 2.

In addition to our improved results on speaker-independent recognition, we have devel-
oped a novel paradigm for training a speaker-independent system. Previously it had been
thought that, to obtain reasonable speaker-independent performance, it was necessary to col-
lect speech from a large number of speakers. Typically, a few minutes of speech is collectedI fon each, o at least 1UU speadkefs. for example, the speaker-independent experiments per-
formed with the DARPA corpus have typically used the speech of 109 speakers to train the
phonetic models. Using our new paradigm for speaker-independent training, we have found
that it is possible to obtain good speaker-independent performance oy training on speech
taken from only a few speakers (12 speakers in our experiments), but with 30 minutes of
speech taken from each of the speakers. In addition, we developed a new training method
in which we estimate models for each of the speakers separately, and then combine the
models to obtain the speaker-independent model. There are several important advantages to3 this new training paradigm. First, it requires much less effort to collect speech from a few
speakers. Second, it is possible to add models from new speakers incrementally, without the
need to reprocess the speech of the other speakers. And finally, in contrast to the original
paradigm, those speakers who have provided a substantial amount of speech will have the
benefit of speaker-dependent recognition with performance three times better than with the
speaker-independent model. Chapter 3 describes the new training paradigm in more detail.

The third major area of research at BBN has been on techniques for rapid speaker
adaptation. There are two important goals for speaker adaptation. The first deals with the
need to minimize the amount of speech needed for training. On the one hand, speaker-
dependent recognition requires the collection of about 30 minutes from each new speaker.
On the other hand, the initial effort required to collect speech from a large number of
speakers for a speaker-independent model may be prohibitive for each new application.
In contrast, using speaker adaptation, we start with a speaker-dependent model from only a
single reference speaker, and then adapt that model to a new speaker by using only 2 minutes
of speech from the new speaker. During this effort we have improved the accuracy of our
previous methods for speaker adaptation. The accuracy is now equivalent to that obtained3 with speaker-independent models, but at a much lower training cost.

The second goal of speaker adaptation is to improve the performance over that ob-
tainable with speaker-independent models. The large difference between the accuracy with
speaker-dependent and speaker-independent models points to the need for a way to improve
recognition accuracy for a given speaker quickly. In this area, we have developed the first
successful method for speaker adaptation starting from a speaker-independent speech cor-
pus. The error rate using this technique is reduced by almost a factor of two relative to the
speaker-independent error rate. Details of this work are provided in Chapter 4.

4
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Chapter 2

I Improved Speech Models
3
3 All the work in this project has been performed within the context of the BBN BYBLOS

continuous speech recognition system. We extended the BYBLOS system in several ways
in an attempt to provide more detailed acoustic-phonetic information: robust smoothing
techniques, supervised vector quantization, phonetic HMM topology, modeling coarticulation
between words, estimation of codebook weights, and Ear-Model signal processing.

I
2.1 Robust Smoothing Methods

In this section we present three methods for smoothing discrete probability functions as
used in discrete hidden Markov models for large vocabulary continuous speech recognition.
The smoothing is based on deriving a probabilistic cooccurrence matrix between the different
vector-quantized spectra. Each estimated probability density is then multiplied by this matrix,3ensuring that none of the probabilities are severely underestimated due to lack of training
data. Experimental results show a 20%-30% reduction in error rate when this smoothing is

i used.

2.1.1 Introduction

Much of the research in speech recognition is devoted to improving the structure of the
statistical model of speech. Frequently, improving the model involves increasing the com-
plexity or dimensionality of the model. For example, we use context-dependent phonetic

15
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models, which increases the number of models. We add features, such as spectral deriva-
tives, which increases the dimensionality of the feature space. We use a non-parametric
probability density function (pdf) to have flexibility in the model, but we lose the benefit of
the compactness of a parametric model. Each of these improvements comes with an increase
in the effective number of degrees of freedom in our model. Unfortunately, more training
data is needed to estimate reliably the increased number of free parameters. Conversely,
faced with a fixed amount of training data, we must limit the number of free parameters or
else our "improvements-^ will not be realized.

In the BYBLOS system, we use discrete nonparametric pdfs of context-dependent pho-
netic models. Most of these pdfs are trained with only a few tokens of speech (typically
between I and 10). These discrete distributions work surprisingly well, given the small3 amount of training. However, they are certainly prone to the problem of spectral types that
do not appear in the training set for a given model, but are, in fact, likely to occur for that
model. One way to determine the magnitude of this problem is to compare the recognition
rate when the system is tested on the training data and on independent test data. If the
difference in accuracy is large, then there is not enough training data for the model.

SThere are many techniques for avoiding the problem of unobserved spectra. The most
common is to combine (average) the estimated discrete pdf with an alternate model, perhaps
with a weight that depends on the number of training tokens [16]. The simplest alternate
model is a uniform pdf. However, a uniform pdf is unrelated to the detailed pdf being
estimated. The detailed triphone-dependent pdf can also be combined with less detailed pdfs
for the same phoneme [29, 30, 31]; for example models of the phoneme that depend onlyIon left or right context, or a context-independent model. While these models are reasonably
related to the detailed model, they are still not as accurate as desired. It is important that the
model used to average with must be closely related to the original model, or else the gain
in robustness may be offset by having less accurate models.

An alternate method to achieve robustness is to smooth the nonparametric pdfs appropri-
ately. In this section we describe the results of experiments with three different smoothing
techniques: Parzen smoothing, self adaptation cooccurrence smoothing, and triphone cooc-5currence smoothing.

In Section 2.1.2 we describe the basic concept shared by all three smoothing techniques,
and the detailed algorithms for each of the techniques. Experimental results are given in
Section 2.1.3.

16
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2.1.2 PDF SmoothingI
The basic tool used by all three smoothing methods is a probabilistic smoothing matrix.
This idea was introduced by Sugawara et al. [37] for recognition of isolated digits. Here
we apply the method to large vocabulary continuous speech.

For each state of a discrete HMM, we have a discrete probability density function (pdf)
defined over a fixed set, _V of spectral templates. For xa..ple, in the LYBLOS System we
typically use a vector quantization (VQ) codebook of size N =256 [211. The index of the
closest template is referred to below as the VQ index or the spectral bin. We can view the
discrete pdf for each state s as a probability row vector

i p(s) = [p(ki s). p(k 2 s), ... , p(kN s)], (2.1)

where p(k, s) is the probability of spectral template ki at state s. We can imagine that
the probabilities of different spectra are related in that, for each spectrum that has a high
probability for a given pdf, there are several other spectra that are also likely to have high
probabilities. These might be "nearby" spectra, or they might just be statistically related. We
represent this relation by p(k, k,), the probability that if spectrum k, occurs, the spectrum k,
will occur also. The set of probabilities p(k) k,) for all i and J form an N x N smoothing
matrix, T, where T, = p(iJ k,).

If we multiply the original pdf row vector p(s) by the smoothing matrix, we get a
-no.thed ,df row vector.

Pamooth(s) = porg(s) x T. (2.2)

In our experiments we use a separate smoothing matrix for each phoneme. This matrix isI combined with the phoneme-indepenU1,nt mtrix to ensure robustness.

The amount of training available for different models varies considerably. from one or
two tokens for the majority of the triphone-dependent models to hundreds of tokens for

! the more common models. Clearly, we don't want to smooth a model as much if it was
estimated from a large number of training tokens. Therefore we recombine the smoothed
pdf above with the original pdf using a weight w(s) that depends on the number of training
tokens of the model. Thus the final pdf used is given by

j , Pfi.(s) = W(S)Po,.ig(s) + [1 - W(S)]P.moath(s). (2.3)

The weight w is made proportional to the log of the number of training tokens, NT:

w(s) = min[0.99, 0.5 log 0 NT(s)]. (24'

This equation is illustrated in Figure 2.1.
7
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Figure 2. 1: Weight w for original model as a function of the number of training tokens, NTr
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We tried three techniques for estimating the smoothing matrix: Parzen smoothing, self
adaptation cooccurrence smoothing, and triphone cooccurrence smoothing. Below we de-
scribe the three methods.

3 Method 1: Parzen Smoothing

Parzen estimation assumes that the true probability density varies slowly in space. In
other words, points that are close according to some distance metric should also have similar
probability densities. We compute a matrix containing the squared Euclidean distance d23 between each pair of bins. Each distance is then replaced by

(2.5)

When a is 1, the function is proportional to a Gaussian. When a is less than 1, it becomes
more pointed - for example at a = 0.5, it is a Laplacian. When a is greater than I it becomes
flatter. Next, we normalize each row of the matrix so that it sums to 1.

Method 2: Self-Adaptation Cooccurrence Smoothing

3 The second method is called self-adaptation because it is identical to our method for
speaker adaptation [101. This method is also similar to the "correlation smoothing" method
in [37]. Figure 2.2 illustrates the speaker adaptation process. First, we record an additional
small set of sentences that have the same text as sentences in the training set. (We used 40
sentences, or about two minutes of speech.)

3 One of each pair of sentences with the same text is labelled automatically using a decoder
with an initial speaker-dependent HMM model, to determine where each phoneme begins and
ends. Then, using a standard distance-based DTW algorithm, we align the pairs of sentences.
We assume that each aligned pair of frames corresponds to different spectral realizations of
the same phonetic event. All the frame vectors are then vector-quantized. For each VQ pair
we increment the corresponding two symmetric entries defined by that pair of numbers in
the smoothing matrix for the phoneme. Then, each row of the matrix is normalized. The
phoneme-dependent matrices are averaged to produce a single phoneme-independent matrix.3 (Two minutes of speech results in 12,000 pairs of VQ indices.)

Method 3: Triphone Cooccurrence Smoothing

I The third method is similar in spirit to the second method, but it tries to overcome two
deficiencies. First, it does not require recording any additional sentences. Second, it derives

-3 the smoothing matrix from all of the training material rather than just 40 pairs of sentences.

After performing forward-backward training, we have a large number of context-dependent3 phonetic models. Most of these (about 2,500) are triphone-dependent models. Each model

9
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VQ Phonetic
Codebook HMMs

Phonetically labeled
HMM VQSequences

Sentence 1 Seg Denter

se~n::e , |cooccurrence
Seuec (j k 0 Smoothing

Sentence2 c

Figure 2.2: Speaker adaptation process. For smoothing, the "target" speaker is just additional

speech from the same speaker.
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I
No. of Occurrences 27 112 198

20
.5 27 1.80 3.00 1.20

S.2 112 3.00 5.00 2.00

I '- I -I 198 1.20 2.00 0.80
27 112 198 F

3

Figure 2.3: Triphone Cooccurrence Matrix Estimation. pdf shown results in matrix incre-

ments shown.

I has three different pdfs. Normally we would interpolate these triphone-dependent pdfs with

less specific models for recognition. However, before interpolation, these models contain a

record of all of the VQ-index spectra that occurred for one part (one state) of a particular

triphone. Thus, according to the Markov model, these spectra freely cooccur. For each pdf

of each triphone model we count all permutations of two VQ spectra in that pdf, weighted by

3 their probabilities and by the number of training tokens of the model. Figure 2.3 illustrates

this process for one pdf of one model.

3For example, the pdf shown has VQ indices 27, 112, and 198 with probabilities 0.3, 0.5, and

0.2, respectively. The model occurred 20 times in the training set. Therefore, we add 0.3 *

0.5 * 20 = 3.0 to entries (27,112) and (112,17) in the matrix. As with the second method,

3we keep a separate matrix for each phoneme and one phoneme-independent matrix. Each

row is normalized to create probabilistic matrices. A method similar to this was developed

independently by Lee [7]. However, in his method there was only one smoothing matrix,

I instead of one for each phoneme, and he estimated the matrix from context-independent

models instead of triphone-dependent models. We believe that these diffe-ences result in too

3 much smoothing.

I
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2.1.3 Experiments

We now describe the experiments in which we compared the performance of the three3 smoothing methods.

Speech Corpus

The experiments with methods I and 3 were performed using the DARPA 1000-Word
Resource Management [261 with 600 training sentences (about 30 minutes of speech) for3 each speaker. Experiments with method 2 were performed using similar material from two
speakers recorded at BBN since we needed to repeat sentences, about 350 sentences or 17
minutes of training speech was used. The test material was 25 sentences (about 200 words)3 for each speaker for all conditions.

Analysis

The speech was lowpassed at 10 kHz and sampled at 20 kHz. 14 Mel-Frequency cepstral
coefficients (MFCC) were computed for each 10 ms, using a 20 ms analysis window. At
the time these experiments were performed (in early 1988) we only used the steady state
cepstral parameters. The effect of the smoothing algorithm on the current system will be

* discussed at the end of this section.

Training

3 Five passes of the forward-backward algorithm were used to derive context-dependent
models. The smoothing matrices were derived by each method. Then, each context-
dependent pdf was smoothed by the appropriate matrix (the matrix for the same phoneme
interpolated with the phoneme-independent matrix). For Parzen smoothing there was only
one matrix. Then the original and smoothed pdfs were recombined as a given in (2.3). The
context-independent phoneme models were never smoothed. Finally, the context-dependent
models were combined to construct word models for the entire vocabulary.

5 Recognition

Recognition experiments were performed with two different language models: the word-
pair grammar that is frequently used with this database (perplexity 60) and with no grammar
(perplexity 1000). In the original experiments we used the Viterbi algorithm for decoding.
The time-synchronous pseudo-Baum-Welch algorithm [30], which gives somewhat betterIresults, was used in the experiments with the current system.

The recognition performance is reported below in terms of total percentage word error
rate, defined as

12
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I

I _Percent Word Error
No Grammar Word-Pair

Speaker Interp Smooth pInterp Smeeth
m0 Interp

3 JWS 25.6 21.8 20.4 4.7 4.7 5.2

30.0 30.5 29.0 8.5 8.0 5.0

I _ :___ 33.8 35.7 36.2 15.0 16.0 15.5

3 Average 29.6 29.3 28.5 9.4 9.6 6.5

I
3 Table 2.1: Parzen Smoothing. A Gaussian window was used.

% word error = 100 substitutions + deletions + insertions
total words

Results

3 Table 2.1 contains results for the Parzen smoothing method for three speakers. Separate
results are given for interpolated context-dependent models (our standard method), for Parzen
smoothing without context-model interpolation, and for both procedures together. As can be
seen, the improvements are both small and statistically insignificant.

Table 2.2 shows results for two speakers using method 2: self-adaptation. In this case

there is a 24% reduction in error rate for both grammar conditions.

Table 2.3 gives results for 7 speakers for method 3: triphone cooccurrence smoothing.
In this case, the reduction in error rate was 10% with no grammar and 30% with a grammar.

-! Discussion

Of the three methods used, methods 2 and 3, which were based on statistical correlation
of VQ spectra worked better than method 1, which was based on a family of spectral distance

13
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Percent Word Error
No Grammar Word-Pair___

Speaker Interp Smooth Smoot Interp Smooth Smooth
-* - ner - - m

JM 32.2 32.7 125.1 7.6 6.6 5.2

UK 22.2 22.2 16.7 3.4 3.0 3.0

3 vrge 27.2 127.4. 20.9 15.5 4.8 4.1j

I Table 2.2: Self Adaptation Cooccurrence Smoothing. 40 repeated sentences. 2 speakers
from BBN.

I 14
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I
I
I

Percent Word Error
No Grammar Word-Pair

Speaker Interp Smooth Smooth
Speke 35.2r _Into Intorp , InteroII F 35.2 30.5 10.0 6.2

Jws 25.6 21.3 4.7 4.7
IPGH 30.0 29.0 8.5 4.5RK 33.8 31.5 15.0 11.7

DTD 31.9 27.6 6.2 6.2
OTB 35.0 34.0 9.4 4.9
TAB 22.5 20.3 7.2 4.5

Average 30.6 27.7 8.7 6.1

U
U

U Table 2.3: Triphone Cooccurrence Smoothing

I
I
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matrices. This confirms the results in [371. This does not mean that there is not some distance3 metric in which a smoothing window would work. Rather the statistical techniques find that
metric automatically. The difference between methods 2 and 3 probably comes from the fact
that method 3 results in more smoothing than method 2 does. More smoothing is generally
more beneficial for recognition with a grammar, and less with no grammar.

U 2.1.4 Effect of Smoothing on Current BYBLOS System

3 The original experiments with smoothing were performed two years ago, when the system
was different in several ways. In particular, the system now uses three parameter sets
of independent codebooks, and models coarticulation between words. Therefore we have
measured the impact of our smoothing algorithms on the most recent configurations of the
system. The use of between-word phonetic models makes smoothing particularly important
because many of the triphones spanning two words occur only once or twice in the training
set, and therefore are poorly estimated.

We found that a large number of the triphones that span two words occur only one
or two times. These models are not well estimated. However, when we use the triphone
cooccurrence smoothing algorithm, the likely bins surrounding the observed bins are "filled
in". When we do not use between-word triphones we measure a speaker-dependent word
error rate of 3.1% When we use smoothing, this error rate decreases somewhat to 2.7%. If
we use between-word triphones without smoothing, the error rate is 2.3% - a 30% reduction
from 3.1%. However, when we use smoothing, this error rate drops to 1.6% - or 30% below
2.3%. Thus, the smoothing algorithm is still an essential contributor to the high performance
of the system.

As will be seen in later sections, smoothing is also effective for speaker-independent
recognition. It is especially effective for cross-speaker recognition.

3 2.2 Supervised Vector Quantization

In this section we describe several attempts to improve the recognition accuracy with the use
of supervised clustering techniques. These techniques modify the distance metric and/or the
clustering procedure in a discrete HMM recognition system in an attempt to improve phonetic
modeling. We considered three techniques: Linear discriminant analysis, a hierarchical
supervised vector quantization technique, and Kohonen's LVQ2 technique. Even though
the techniques improved the phonetic recognition capability of the vector quantization, the

*16
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overall word and sentence recognition accuracy did not improve.

2.2.1 Introduction

Even in a discrete Hidden Markov Model system, there is an underlying distance metric that
is used to divide the spectral space into distinct regions. The BYBLOS system currently
uses context-dependent phonetic discrete HMMs based on three codebooks. The first code-
book contains 14 mel-frequency warped cepstral coefficients (cl-cl4) computed every 10
ms directly from the speech power spectrum. The second codebook contains the 14 "dif-
ferences" of these parameters, derived by computing the slope of a least squares linear fit
to a five-frame window centered around each frame [11]. Finally, we use a third codebook
that has the amplitude-normalized log rms energy and the "difference" of this energy. We
divide these 30 features among three codebooks to avoid the training problem associated
with high dimensionality. Each codebook is designed using a nonuniform binary cluster-
ing algorithm, followed by several iterations of the k-means algorithm [21]. The k-means
clustering algorithm uses Euclidean distance.

As a possible method for improving recognition accuracy, we investigated the use of
linear discriminant analysis [6, 8]. We also considered several methods of nonlinearly warp-
ing the spectral space as part of the vector quantization process. We call these methods
"supervised clustering" techniques. To use these techniques, we need to define the classes
that we want to discriminate. We chose the (50 or so) basic phonemes as that set, under the
assumption that these represent most of the distinctions that must be made in large vocab-
ulary speech recognition. To obtain phoneme labels for the training data we first estimate
speech models using the standard techniques in the BYBLOS system and then segment auto-
matically all of the training data into phonemes using the decoder (recognizer), constrained
to find the correct answer. The recognized segment boundaries are then used to assign a
phoneme label to each frame. Each of the techniques described below then attempts to define
a distance metric or vector quantizer that can recognize the phoneme label of a single frame
of speech.I
2.2.2 Linear Discriminant Analysis

Brown [6] has proposed using several successive frames jointly in order to Anuuei the joint
density of the observed speech more accurately. He then uses linear discriminant analysis
(LDA) to reduce the number of dimensions. We attempted to use LDA on our 30 mixed
features to find a set of features that would, in fact, be more independent. In addition, we
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hoped that we would automatically find a more beneficial weighting of the different features
than simple Euclidean distance.

We compute the within (phoneme) class and between class means and covariances of all

the frames of training data. We use the generalized eigenvector solution to find the best set
of linear discriminant features. Then, we simply cluster and quantize the 30 new features as
usual. Alternatively, we can divide the new features up into a Simall number Uf codebooks
in order to reduce the quantization error. We use these new (quantized) features in place of
the original features for discrete HMM continuous speech recognition.I
2.2.3 Supervised Vector Quantization

In addition to simple linear discriminants, we consider more complex warpings of the feature
space. We call the general approach supervised clustering or supervised VQ. Instead of
finding a codebook that minimizes mean square error, without regard to phonetic similarity,
we use the training data to generate a codebook that tends to preserve differences that are
phonetically important, and disregard feature differences (even if they are large) that are not
phonetically important. In effect, we attempt to maximize the mutual information between
the VQ clusters and phonetic labels. We describe two techniques below that seem suitable
for accomplishing this goal.

Binary Division of Space

The first algorithm is most closely related to the nonuniform binary clustering algorithm
that we use to derive an initial estimate for k-means clustering [21]. All the labeled frames
are initially placed in one cluster. Then, we iteratively divide the clusters until we have the
desired number. One of the many clustering algorithms we tried is given below.

First we measure the entropy reduction that would result from dividing a single cluster
into two:

1. Estimate a single diagonal-covariance Gaussian for the frames with each phoneme
label in the cluster.

2. Identify the two most "prominent" phonemes within the cluster.

3. Divide all the frames in the cluster into two new clusters using these two Gaussian
distributions.
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4. Compute the difference between the entropy of the phoneme labels in the original
cluster and the average entropy of the two new clusters, weighted by the number of
samples in each subcluster.I

The outer loop repeatedly divides the cluster that will result in the largest enropy reduc-
tion.

1. Divide the cluster that would result in the largest entropy reduction.

1 2. Create two new clusters and measure the potential entropy reduction for dividing each
of the two resulting clusters as described above.

3 3. If we have fewer than 256 clusters, go to (1).

The one-step lookahead avoids dividing a large cluster when no reduction in entropy
would result. The resulting codebook is then used to quantize all of the training and test
data. While this algorithm increased the mutual information between the codebook and the
phonetic labels, there was no gain in the overall recognition accuracy.

LVQ2: Kohonen's Learning Vector Quantizer

The LVQ2 algorithm [17] was used very effectively in a phoneme recognition systerr.
[221. The algorithm amounts to a discriminative training of the codebook's means to maxi-
mize recognition of the frame labels.

As before, we start with -the set of phonetically labeled frames. For LVQ2, we use
a "sliding window" of some fixed size centered around each frame to create large feature
vectors (7-frame windows were used in [22]). Then we use the binary and k-means algorithm
to divide the feature vectors from each phoneme into several clusters. We make the number
of clusters for each phoneme proportional to the square root of the number of frames of
that phoneme, such that the total number of clusters is 256. Each cluster has the name of
the phoneme data in it. Then, we use LVQ2 to shift the cluster means to optimize frame
recognition. We review the algorithm below briefly. For each feature vector:

3 1. Find the nearest cluster and the next nearest cluster from a different phoneme.

2. If the nearest cluster is from the wrong phoneme and the second nearest is of the
correct phoneme, shift the mean of the correct cluster toward the feature vector in
question and shift the wrong cluster's mean away, according to:

mi(t + 1) = mi(t) - a(t) (x(t) - mi(t))
19
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m;(t + 1) = mj(t) + a(t) (x(t) - mj(t))

where x is a training vector belonging to class j,
m, is the reference vector for the incorrect category,3 is the reference vector for the correct category, and
a(t) is a monotonically decreasing function of time.

I The above algorithm is iterated until convergence (which requires some care). As sug-
gested in the reference, we used several adjacent speech frames together as a longer feature
vector. We also performed experiments in which we used the LVQ2 algorithm separately on
several frames of steady state cepstra and several frames of difference cepstra. The resulting
codebooks are used in the normal way.

2.2.4 Experiments And Results

We performed speaker-dependent recognition experiments on a six-speaker subset of the
DARPA Resource Management speech corpus, using the May 1988 test set. Continuous
speech recognition experiments were done using the word-pair grammar and also with no
grammar.

To understand the behavior of the supervised clustering algorithms, we measure the
correspondence between the resulting codebooks and the phonetic labels. First, we determine
the most frequently occurring phoneme label within each cluster. We then quantize new
frames and use the VQ indices to "recognize" the phoneme labels of the independent data.
Table 2.4 shows the phoneme-frame recognition accuracy for training and test data, and for
steady state and difference cepstra. The results show that codebooks made by the binary
split algorithm are slightly better than the unsupervised k-means algorithm at recognizing
a phoneme label from a single frame of steady-state cepstra. We performed similar frame
recognition experiments using LVQ2 with sliding windows of length 1, 3, 5, and 7 frames.
Table 2.4 shows that LVQ2 is better than both k-means and binary division at predicting frame
phoneme labels, even when LVQ2 does not look at a frame's neighbors. As we increase
the window size, the correspondence between the VQ clusters and phonemes improves
significantly.

The results of continuous speech recognition experiments are given in Table 2.5. The
control experiment for these results which used a somewhat older version of the BYBLOS-I system is labeled k-means. The HMM recognition system has a number of system param-
eters. Wherever possible, these parameters are left unchanged between the k-means control
and the other tests.
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Metric / Cepstra Diff Cepstra
Algorithm train test train test

K-means I frm 43% 41% 23% 21%
Binary l frm 45 42 25 22
LVQ2 I frm 49 44 29 25
LVQ2 3 frm 57 51 39 33
LVQ2 5 frm 62 55 46 39
LVQ2 7 frm 65 57 50 43I

Table 2.4: Frame Phoneme Recognition Rate

I The last condition in Table 2.5 (labeled "Recent BBN") corresponds to the most recently
reported performance of the BBN BYBLOS system for this subset of the May 1988 data
[I]. The system that produced this performance is similar to the control system, except that
in addition to modeling coarticulation within words, we used cross-word context-dependent
phonetic models (triphones) to model coarticulation between words. This experimental result3 is included purely for reference.

We discuss four LDA experiments with variations in the number of codebooks and
assignment of linear discriminants to codebooks. In all four tests we concatenated the
14 cepstral coefficients, the 14 "difference" coefficients, and the two normalized energy
coefficients, and used LDA to extract a new set of 30 discriminant features. In the first test
(30f) we then clustered all 30 discriminant features into one codebook which was used in
HMM recognition. In the second test (15f,15f), we split the 30 discriminant features into
two 15-parameter codebooks. In the third test (15f) we used only the first 15 discriminant
features in a single codebook. Finally, in the fourth test (km,15f), we used the standard three
codebooks together with a fourth codebook containing the first 15 discriminant features. As
can be seen in Table 2.5 most results using LDA did not improve over the baseline 3-
codebook condition.

We performed three recognition tests of supervised clustering using the binary division

algorithm. In the first test (300, we concatenated all 30 parameters into a single feature
vector and created one codebook using binary division. In the second test (c,d,e), we

* used binary division to cluster separately the cepstrum, difference cepstrum, and energy
coefficients. This three-codebook experiment, then, is a direct comparison between binary
division and unsupervised K-means. As Table 2.5 shows, neither the one-codebook nor
the three-codebook binary division experiments resulted in improved recognition over the
baseline. As a third test (km,30f), we add the 30-feature binary-division codebook from the
first test to the three unsupervised codebooks of the control. This four codebook experiment
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System Grammar
Codebk(s) word-pair none

K-means (km) c,d,e 3.6 % 18.8 %
Lin Discrim 30f 5.1 20.3
Lin Discrim 15f,15f 4.7 20.9
Lin [iscrim 15f 6.2 24.9
Lin Discrim km,15f 3.8 16.1
Binary Div 30f 4.8 20.6
Binary Div c,d,e 3.9 17.2
Binary Div km,30f 3.3 17.1
LVQ2 (1 frm) cde 4.0 18.5
LVQ2 (3 frm) c,d,e 4.2 17.7
LVQ2 (5 frm) cde 3.3 18.1
LVQ2 (7 frm) c,d,e 3.9 18.6
LV2 7frr) c,d~e 3.9 18.6

LVQ2 (3/5frm) cde 3.2 18.1

Recent BBN cde 2.1 137
c = cep, d = dif, e = energy, <#>f = <#> features

Table 2.5: Word Recognition Error: Multiple codebooks

results in a small (10%) reduction in error rate relative to the three codebooks by themselves.

Next, we show several three-codebook recognition experiments using the LVQ2 algorithm
with windows of size 1, 3, 5, and 7 frames on the cepstral and difference coefficients. For

simplicity, the energy parameters were clustered using the baseline K-means algorithm. In
the last experiment, the cepstra codebook uses a 3 frame window and the difference-cepstra
codebook uses a 5 frame window. While there are small random variations in the results,
there are no significant improvements in overall recognition accuracy.

We were surprised that the LVQ2 algorithm improved the frame recognition accuracy so

much without improving the overall speech recognition accuracy. Therefore, we performed
an additional set of experiments using oniy one codeoook with steady-state cepstra. These

results are summarized in Table 2.6. We see, again, that the improvement in cluster/phoneme
correspondence from increasing LVQ2's window size does not necessarily translate into

better system word recognition.
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U System Grammar frame
(cepstra-only) word-pair none recog

K-means (1 frm) 8.4% 30.0% 41 %

LVQ2 3 frm 7.5 30.8 51
LVQ2 5 frm 7.5 28.9 55
LVQ2 7 frm 8.2 29.8 57

Table 2.6: Word Recognition Error vs Frame Recognition Accuracy for one codebook

2.2.5 Discussion of Results

The results generally show that, even when the supervised clustering is successful at im-
proving the correspondence between the VQ codebook regions and the phonetic labels, the
overall speech recognition accuracy does not improve. We can draw two possible conclu-
sions from these results relative to previous successes with these techniques. First, while it
might be possible to find a small number of discriminant directions that are important for
a small vocabulary task - especially one with minimal pair differences - it may not be as
easy in a large vocabulary task, where the important distinctions are many and also very
varied. That is, any choice of discriminants that is better for some distinctions may be worse
for others. Second, it is not clear that optimizing phonetic distinctions on single frames will
help a recognition system whose goal is to recognize words using triphone models.

2.3 MMI Estimation of Codebook Weights

In the BYBLOS system we currently use three independent parameter sets to represent
speech. We multiply the discrete probability of the three sets, assuming independence.
However, there is no reason to believe that these three sets are equally useful. We have
found empirically that we can improve recognition accuracy by giving more weight to some
codebooks. This is accomplished by having the probability for each set exponentiated by a

* corresponding weight.

We would like to be able to estimate these weights automatically in order that they could
vary across different speakers. However, these exponential weights can not be estimated-I using maximum likelihood since the likelihood would be maximized when all the exponents
are set to 0. If the exponents were constrained to sum to 1, maximum likelihood would set
one of them to I and the rest to 0. Therefore, we investigated the use of Maximum Mutual
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Information techniques to estimate the exponential codebook weights.

2.3.1 MII Estimation for Continuous Speech

In maximum likelihood estimation, we want to find a parameter vector 9 so that the quantity

Pr (A,IW) = max Pr(A,14)

I is maximized, where Pro(A, R-) is the joint probability of uttering text t' and produc-
ing acoustic evidence A, using a model parameterized by 0. Furthermore, we can factor
Pre(.4. WV) as

Pre(A, W) = Pro(A WV) Pr9(lU)

where the acoustic model Pr&(A 11) and the language model Pr6 (l') can be estimated
separately.

Maximum Mutual Information Estimation: It has been shown that ML will give the op-
timal estimator under a certain set of conditions [23]. However, these conditions are rarely
if ever satisfied in speech recognition. One alternative, as proposed in [6], is to use max-
imum mutual information parameter estimation. Instead of choosing parameter vectors 0
to maximize the joint likelihood Pr0(A, t'), the objective function in MMI is the mutual

information between the events A and W:

1 Pro(A, W)

I0(V; A) = log Pro(A) Pre(W)
= log Pr9 (A ' I I) - log Pr,(A) (2.6)

I In MMI, the parameter vector 0 is chosen to maximize Io(W; A). Pro(A) in (2.6) can be
further expanded as

Pro(A) = Pre(A IV)Pi'9 (W). (2.7)

I As can be seen, the term log Pre(A) in the criterion implicitly takes all possible word
sequences 11' into account.

3 Assuming that the language model Pre(W) = Pr(WV) is given, the goal in MMI is to
choose acoustic parameters 0 to maximize information. Taking the derivative of I(W; A)
with respect to parameter 0,
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bIe(W; A) P',(AJW) Z 6Pr&(A!W' Pr(ltr)

30i Pr (A1 W) Pre(A) (2.8)

The first term in (2.8) corresponds to the derivative of the maximum likelihood objective
function. The second is an additional term introduced by maximum mutual information,
which subtracts a component in the direction of A ,,1A,'W) for each possible word sequence

IV in the language, including 117. In ML, the objective is to increase Pro(A W) for the
correct word sequence IT-. In MMI, the objective is to increase Pre(A W), but also to
decrease Pre(A 1I) for every incorrect word sequence I'. This is the major difference
between ML and MMI.

Applying (2.8) to an HMM, for the case of 0 being the parameters of an output distri-U bution,
bPr0 (A TIT) T 6bj (I(t))

Zoj Y E  i(t - 1)a, ( )oj )(t) (2.9)

and

6Prg(A:W) ETI F ai(t - I )aij( 1b, (Y (t)
6S _ b )3((2.10)

Pro(A E W) -iai(T)

6b(Y(t))

,i( )( (2.11)=1 E )bj (Y(0))

where ai(t - 1) and Oj(t) are the forward and backward probabilities, respectively, in the
Baum-Welch computation, yjj(t) is the conditional probability of state j at time t used in
reestimation, and aij and bj(Y(t)) are the transition and output probabilities, respectively,
where the output distributions are associated with the state (for the sake of simplicity, a-d
without loss of generality, the tying of distributions is not treated here, so each state is

assigned a unique distribution).

2.3.2 MMI Estimation of Exponential Coefficients

-1 In the BYBLOS system, the input features in general are represented as multiple streams of
discrete labels produced by multiple vector quantization (VQ) codebooks (corresponding to5 decomposition of input features into multiple feature sets), so that for each 10 millisecond
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frame interval, N output symbols are observed [13]. We make the assumption that the labels
at a frame are independent, so that the joint label probability density function (pdf) at the state
can be written as a product of the individual densities. We can assign exponential weighting
coefficients to the individual pdfs to reflect the relative importance of the various feature sets
for recognition. In addition, we use a robust context-dependent phonetic modeling technique
to model the output pdf at a state in a word [30], so that the pdf for a state is computed as
an interpolated pdf of M context pdfs (we typically use context-independent, left, right, and
triphone contexts). We express the conditional pdf at state j as

Ar
b3(Y(t)) = E Ambj,(Y(t))

Ar N
=E Am ,l b (y,,(t)) (2.12)

m=l 
n= .

3 where bj,(Y(t)) is the conditional probability at state 1 of observing the vector of N labels
Y(t) at time t for context model m, Am the prior probability (context weight) for context
pdf m, bimn(y,(t)) the conditional probability of observing the nth output label yn(t) at time
t for context pdf m, and m, the exponential weighting coefficient assigned to distribution

Previously, the assignment of the coefficients (mn was done by trial and error: their
values are chosen empirically to give good recognition performance, and these values are
fixed across all test speakers. We would like to be able to estimate the Cmn's automatically
from data in order for them to be speaker-specific, and also let therh vary as a function of
the context model m, to improve recognition accuracy. Since ML methods would invariably
choose only one codebook (one with highest average probability on data) and set the rest to
zero, the estimation of codebook weights can only be done with MMI-like training paradigms.

With this goal in mind, we can apply (2.11) and using the particular form of the distribu-
tion give by Equation (2.12), with 0 being (,, for a particular codebook n and a particular
context model m,

I 6b, (Y (t) )5(6b _ Am log(bjn) I 1-J b ' m((t)(

bj(Y(t)) bj(Y(t))

Taking( 2.11), and summing over states j, we have

6Pr(AI W) T A,. log(bj,,. ) FlJ b1'-(y,(t))bc".' -= 1 -: 1: 1t) (2.14)
Pre(A W) - 1 bjCYt))
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In the case where we allow to vary only with n, we simply take the sum over m of the3 numerator, and

r 7j~) _lA,, log(bjm, ,) FIN I b '
-Z - t) rn- T = j (2.15)a Pre(A I) j t= bj(Y(t))

2.3.3 Implementation Issues

Finding the Imposter Sentences: In computing the MMI objective function and its associ-

ated maximization, one needs to compute the probabilities Pr(A 1 fi') for all Ti'. Of course

this is practically infeasible for any reasonable size vocabulary. In practice, one only needs
to compute Pr(A I li') for a (relatively small) subset of W, those which are confusable
with the correct word sequence 14. Bahl et al. [2] derived the imposter W's in a 2000-word
isolated word task by performing an acoustic fast match for each word in the utterance, and
the Ti"s were taken to be those words that were not pruned by the fast matcher.

For a continuous speech recognition task, we compute the TV's using the N-best algo-
rithm, which computes the N best scoring complete sentence hypotheses for each utterance
[351. This algorithm is computationally efficient, and its output can be used directly in MMI
training. For the results reported in this paper, we limit the number of imposter hypotheses
per utterance to 10, so that the N-best alternatives can be computed relatively quickly. In
fact, since we are using a perplexity 60 finite-state grammar, it was almost always the case
that the top 10 alternatives account for most of the likelihood Pre(A).

I Maximizing the Objective: The hill-climbing technique that we use to maximize mutual
information I(A; W) is a gradient descent where we first compute the gradient (from the
ji(t)'s) of the objective function, and perform a line search along the gradient to optimize
the objective function, and then repeat. This is an iterative procedure to which the following
heuristics are incorporated to minimize computation:

1 1. To minimize the computation during line search, which in general requires computing

the objective function (the a's) several times, we use a hybrid method where the line
search is terminated immediately upon finding a better solution than the current one.
This ensures that the gradient descent always gets to a better point in the solution
space, and yet can be more ambitious in taking a larger step for faster convergence (in
general, the straightforward descent algorithm is guaranteed to increase the objective
function if a small enough step is taken in the direction of the gradient, but it may
require a large number of iterations to get to the maxima).
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2. In addition, to get a reasonable initial step size for the line search and make this
descent algorithm better behaved for this problem, at each iteration we limit the initial
step size _/1j to a percentage w of its value:

I li< 6(W)6C

3. Finally, since we are only interested in finding a reasonably good solution, and not
necessarily the globally best solution, we limit the number of iterations of gradient
descent. In practice, we found that since the solution space is highly constrained (with
only a few degrees of freedom), a near-optimal solution is almost always reached
within five iterations.

g 2.3.4 Experimental Results

In this section, we present recognition results using MMI for estimating the exponential
codebook coefficients, on the standard DARPA 1000-word Resource Management speaker-
dependent speech corpus [26], using the Word Pair Grammar (perplexity = 60). Input speech
was sampled at 20 kHz, and 14 Mel-Frequency cepstral coefficients (MFCC), their derivatives5(dMFCC), plus power (RO) and its derivative (dRO) were computed for each 10 ms, using a
20 ms analysis window. Three separate 8-bit codebooks were created for each of the three
sets of features using K-means vector quantization.

In these experiments, context-dependent acoustic models were trained using 600 training
sentences (about 30 minutes) for each speaker. An additional 100 sentences were used
to estimate the codebook coefficients: first, the N-best alternatives are computed; these
alternatives are then used in estimating the weighting coefficients for the different codebooks
in the HMM using gradient descent (see Equations 2.8 and 2.11). In all of the results, five
iterations of gradient descent were used. An independent set of 25 sentences per speaker
were used for testing.

I Table 2.7 shows the recognition results I averaged across 6 speakers of applying MMI
estimation to exponential codebook coefficients. In Experiment C3, 3 coefficients were
estimated, and in C12, 12 coefficients (context-specific). As can be seen, estimation of
codebook weights C3 achieved a modest reduction of 11% in word error rate (3.2% vs
3.6%) over the baseline. However, allowing the coefficients to be context specific (C12) did
not improve performance (3.4% word error).

1The baseline results shown here do not reflect the most up-to-date system. This experiment was used
strictly and only for comparison of techniques.
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Method Word Error Sent Error

Baseline 3.6 19.3

C 3  3.2 20.0

C1 2  3.4 19.3

Table 1.7: Recognition results using Word Pair Grammar (perplexity = 60).

£ Codebook Coefficients Mutual Info Gain

I Speaker MFCC dMFCC RO + dRO (bits)

bef .39 .42 .04 +0.22

I cmr .43 .60 .11 +1.76

das .18 .53 .37 +0.15

I dtb .36 .60 .11 +0,39

dtd .40 .63 .11 +0.37

ers .41 .54 .11 I +0.86

Table 2.8: Statistics of MMI training of codebook weights (5 iterations of gradient descent).
Initial weights = (.50, .67, .33)

3 Table 2.8 shows the resulting codebook coefficients and mutual information gain as a
function of the speaker, after MMI training with 5 iterations of gradient descent. As can be
seen, the coefficients have changed signficantly from the initial values of .5, .67 and .33,
and the amount of change varies depending on the speaker. Also the mutual information
improved consistently across all the speakers.

For experiment C12, larger gains in mutual information were observed as a result of
training. Again, the coefficients had changed noticeably from their initial values. Also, the
derived coefficients were different for different contexts, indicating the utility of context-
specific coefficients, although the recognition results didn't seem to reflect that.

Although the results demonstrated so far are only moderately positive, it may in fec, be
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the case that perhaps it is to be expected. The initial coefficients used in the estimation had
already been tuned previously to optimize recognition performance, so that MMI estimation
only serves to fine tune them further, for each speaker. The discriminative effect of a few
exponential parameters is quite limited. However, further work is needed to fully explore
this powerful technique of parameter estimation for speech recognition.

I
2.3.5 Conclusions

IIn summary, we presented a useful application of MMI estimation to a particular type of
HMM parameters, namely, exponential codebook parameters, in continuous speech recog-
nition The MMI computation was made feasible by making use of the N-best decoding
algorithm for computing the alternate sentence hypotheses used in maximizing the objective
function. Although the results were only moderately positive, it does demonstrate the utilityIof this technique. Further work is needed not only for the particular problem reported, but
for estimating other parameters of interest in speech recognition.I
2.4 Ear-Model Signal Processing

We implemented the "ear model" signal processing algorithm described by Jordan Cohen of
IBM. This signal processing method computes a filter bank model from the power spectrum
and normalizes the filter levels dynamically. It was reported to reduce the sensitivity of the
IBM system to differences in channel which result from using a desk-mounted microphone.
When we used this signal representation as an alternative to our standard cepstral analysis
we found no improvement in the recognition accuracy. Perhaps this is because the signal

31 we are using is quite clean and has little variability.

1 2.5 Phonetic HMM Topology

3 All of the experiments at all of the DARPA sites using HMM techniques have used the
simple 3-state phonetic model that we introduced several years ago. To create more detailed
models, we experimented with larger, more detailed phoneme topologies. For example,
5 or 13 states for each phoneme. We also experimented with different HMM phoneme
topologies for different phonemes. For example, phonemes that were likely to be long hadg longer topologies, while phonemes that were often short had shorter topologies. Surprisingly,
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the initial experiments indicated that using the basic 3-state model for all phonemes yields
the best performance.

1 2.6 Modeling Coarticulation Between Words

'I Most of the recognition errors in the system involve short words. These words are largely
affected by coarticulation from neighboring words. Therefore, we have extended the basic
context-dependent modeling to model the dependency of the acoustics of the first and last
phonemes in a word on the identity of the adjacent phonemes in the neighboring words.
We implemented a simple way of modeling this dependence without changing most of our

software. Basically, given a phonetic vocabulary and a grammar, we redefine both so that
we end up with a grammar of phoneme models that embody both the desired word sequence

constraints and also include the coarticulation effects across word boundaries. The result
was that the error rate was decreased by 30% under most conditions. Interestingly, since

there are now a large number of models that are estimated from only one or two training
samples, it became more important tha: the models be smoothed using our cooccurrence
smoothing algorithm. When the smoothing algorithm was not used, the gains from using
between-word coarticulation was cut in half.I
2.7 Deleted Estimation of Context Weights

The BYBLOS system interpolates all the different probability densities of the context-

dependent phonemes to obtain a robust estimate of the densities. Currently we use heuristic
weights that are a function of:

9 type of context (phone, left, right, triphone)

@ number of occurrences in training (5 ranges)

a state in phone model (left, middle, righ."

The values of these weights were set based on reasonable intuitions about the importance

of phonetic contexts and amount of training on different parts of a phoneme. We ran a few

tuning experiments (on an earlier database) to determine rough scaling factors on the initial
weights. Therefore, it is likely thai we would see no further improvement by estimating
the weights automatically with deleted estimation. However, we might expect that if we
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estimated the weights automatically, we could use different weights for each speaker. We
wanted to avoid any approximations if possible, due to assumptions about the alignments
remaining fixed, and so we chose to iteratively estimate the weights and then reestimate the9 probability densities.

We were worried about the effectiveness of the jackknifing procedure that is normally
used, since the weights for combining models are estimated for the case where only half of
the data was used to estimate the models. Therefore, we developed a method for holding
out only one utterance at a time, that was still very efficient.

£Each normal pass of forward-backward is followed by a second pass that estimates the
weights. At the end of the forward-backward pass, we retain the "counts". In the second
pass we remove the "counts" from one sentence at a time and then estimate context weights
using that deleted sentence. The procedure follows:

I1. Run usual forward-backward iteration on all sentences.

3 2. For each sentence:

(a) Run forward-backward on this sentence using "old" model to determine its con-
tribution to the new model.

(b) Subtract the contribution of this sentence from those models relevant to this
sentence.

(c) Run forward-backward to compute weight counts from this sentence using the
model with the contribution for this sentence removed.

3. Reestimate the context weights from the weight counts.

4. iterateI
This algorithm requires only two times the computation of the normal forward-backward

algorithm, and should result in a more accurate estimate of the weights than the usual proce-
dure. Unfortunately, when we ran our initial experiments, we found no improvement, despite
the fact that the likelihood of the training data had increased somewhat. It is possible that3 the initial heuristic weights are close enough, or that the "reasonable" continuity constraints
existing in the initial weights were lost when each weight was estimated independently.
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3i Chapter 3
I

Speaker-Independent Modeling

IOur work in speaker-independent recognition falls into two categories. First, we performed
experiments using the DARPA Resource Management 109-speaker corpus; using various
techniques we have reduced the error rate for this scenario to 3.9%, which is the lowest
error rate reported to date for this corpus. The second category involves a new paradigm for
speaker independent training. Rather than requiring a small amount of speech from a large
number of speakers, we use a larger amount of speech from a relatively small number of

speakers, which is a much more practical scenario. In addition, we found that a simplification
to the training paradigm also improved the results.

1 3.1 Improvements to Speaker-Independent Recognition

We had previously experimented with the second derivatives of the spectral parameters as
additional features for speaker-dependent recognition, with no significant improvement. We
also had experimented with tied-mixture densities and a greater number of smaller codebooks.3 Most recently, we reported improved speaker-independent recognition simply by training the
male and female speakers separately. We combined all of these system features and ran a
series of experiments on speaker-independent recognition.

The basic 3-codebook result for the 109-speaker training set using the Word-Pair Gram-
mar was 6.5% word error. When we used separate male and female models, the error rate

-3 went down to 5.5%. When we added codebooks with the second derivative of the cepstrum
and power, the error rate went down to 4.9%. And finally, when we used the tied-mixture
representation of the data to estimate the models, the error rate dkcreased to 3.9%. This
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error rate is the lowest of any reported thus far using this training set. (For comparison, the
result reported for the CMU Sphinx system at the June 1990 meeting was 4.6%.)

R3.2 New Paradigm for Speaker-Independent Training

It is a widely held belief that speech used for training SI models must be collected from
many speakers. It is also commonly accepted that collecting only a small sample of speech
from each training speaker is a reasonable compromise to make in the effort to collect as
many speakers as possible. While this compromise may be reasonable for SI recognition,
several efforts to use such a corpus as a basis for speaker adaptation have failed to make
significant improvements.

Recently, we have discovered that adequate SI performance can be achieved with far
less speaker coverage than conventionally thought necessary, but with much better sampling
of each training speaker's speech. Specifically, we show that it is possible to achieve near

I state-of-the-art SI performance on a 1000-word continuous speech recognition task using
only 12 training speakers. Furthermore, we will show that it is possible and advantageous

to create the SI model from a set of independently trained speaker-dependent (SD) models,
without retraining on the entire pooled dataset at one time. Most importantly, we show in

Chapter 4 that such a SI corpus is an effective basis for speaker adaptation.

SI Training with Few Speakers

I It would be far preferable if we could train a SI system using large amounts of speech from
a few speakers. First, in many cases it is inconvenient to arrange for, set up, and collect a3 few sentences from a large number of speakers. It is clearly much easier and faster to collect
a large amount of speech from a few speakers. Second, in contrast to the usual scenario,
there is a very large incentive for those speakers who are the training speakers. In our recent
experiments, we have seen that the recognition accuracy for the training speakers is almost
the same as speaker-dependent performance, i.e., two to three times lower error rate than SI

performance.

Below we describe a series of experiments in which we used the speech from the 12

speakers in the SD portion of the DARPA corpus. The training for each speaker consisted of-I 600 training utterances. Seven of the speakers are male and five are female. The experiments
explored many ways of combining the speech from different speakers and considered the3most effective method for using our robust smoothing techniques.
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Independent Smoothing and Training

We did have some indication that pooling the data of even a few speakers could make
large improvements from an experiment conducted at IBM and described in [28]. However,
12 speakers could hardly be expected to contain an example of all speaker types in the
general population (including both genders), so we could anticipate the need for some kind
of smoothing before we began. Our usual technique for smoothing across the bins of
the discrete densities, triphone cooccurrence smoothing [341, has proven to be an effective
method for dealing with the widely varying amounts of training data for the detailed context
models in the system. When used in a SD training scenario, it has allowed us to observe a
performance gain for explicitly modeling several thousand triphones which were observed
only once or twice in the training.

However, the cooccurrence smoothing is not appropriate for models derived from the
pooled data of many speakers. Spectra from different speakers will cooccur much more ran-
domly than spectra from a single speaker. This will yield poorer estimates of the smoothing
matrices. As such, triphone cooccurrence smoothing is a speaker-specific modeling tech-
nique. If the data is pooled prior to training, we cannot effectively apply our best smoothing
to the model.

This realization has led us to examine the practice of pooling the data in the first place.
A straightforward alternative to pooling the data is to keep the speakers separated until the
speaker-specific operations of training and smoothmg ha.c bcen ,-.,,J and then combine5the multiple SD models. To allow the model combination to be done by averaging the model
statistics, we constructed a SI codebook which was used in common for all speakers.

Results of SI Experiments

I Results for several SI experiment are shown in Table 3.1. All results are from first runs of the
designated Feb. '89 SI test set on the given system configuration. This test set consists of 103 speakers (4 females) with 30 utterances each. All runs used the standard word-pair grammar
of perplexity 60. System parameters were fixed before running any of the conditions in this
experiment. The limited development testing which we did perform was done only on the5June '88 SD/SI test set using only the 109 speaker SI model.

For each condition we show the number of training speakers, and the manner in which
- the models were trained and smoothed. The training was done either on pooled data (joint

training) or on individual speakers' data (indep training). The smoothing was either not done,£ or was applied to either the jointly or independently trained model. For each condition, the
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word error rate (which includes insertion errors) and sentence error rate are given.

#Spkrs Training i Smoothing Word Err Sent Err

109 joint none 7.1 36
109 joint joint 6.5 34

12 joint none 9.0 42
12 joint joint 8.5 41

12 joint indep 7.8 37
12 indep indep 7.5 37

Table 3.1: Comparison of SI training scenarios on the Feb. '89 test set with word-pair
grammar.

I
The 109 speaker conditions were run to calibrate the BYBLOS system with published

results for the same test set. We observe a small improvement, from 7.1% to 6.5% word
error, for using smoothing on the jointly trained model. The 6.5% error rate is comparable to
the best performance on record (6.1%) for this test set which was achieved by Lee as noted3 in [20]. Furthermore, the sentence error rates are identical. Lee's system used a corrective
training and reinforcement procedure to increase the discrimination ability of the model for
confusable words. No corrective training was used for the BYBLOS results given in Table

* 3.1.

The system configuration for the 109 speaker condition was identical to that which we
use for SD recognition except for one difference. One new system parameter was added
to decrease the factors used for combining the context-dependent models into interpolated
triphones [30] by a factor of eight to account for the larger corpus.

Next we repeated the same conditions for the 12 speaker SI model. Simply pooling the
12 speakers without smoothing does not perform as well as the 109 speaker model. And
once again, smoothing the jointly trained model has a rather weak effect on performance.
However, we were surprised that the 12 speaker model should have only 25% more error
than the 109 speaker model.

The final two results show the effect of independently smoothing the 12 speaker model
after either joint or independent training. To independently smooth the jointly trained model,
we first trained on the pooled data as usual. Then a SD model was made, for each training
speaker, by running the forward-backward algorithm on the combined SI model but on
data from only one speaker in turn. This allowed us to generate a set of SD models for
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IFigure 3.1: Block diagram of independent training and sotigmethod.

3smoothing, which shared a common alignment. The smoothed models were then recombined
by averaging the model statistics.

The approach used on the final result, which is illustrated in Fig. 3.1, is the most straight-
forward. First, we train a separate SD model from the speech of each speaker independently,
allowing each to align optimally for the specific speaker. Second, we smooth each of these
models independently to model random spectral variation within the speaker. (Note that
these operations can be performed at different times for different speakers as we get more
data from new speakers. In addition they can be performed in parallel on different machines
if speed is required.) Finally, we combine the models from all the speakers simply by
averaging the corresponding discrete probabilities across the speakers.

As is evident from Table 3.1, both of the final methods improve performance, due to
the increased effectiveness of the smoothing when it is applied to a speaker-specific model.
In a final surprise, we find that constraining all the speakers to a common alignment does
not help. Further, the word error rate of this simple model is only 15% worse than the
comparable condition with the 109 speaker model and the sentence error rates are statistically
indistinguishable. 37

!3



Report No. 7528 BBN Systems and Technologies

Some caution is required in comparing results of the 12 and 109 speaker models due to
two, possibly important differences. The total amount of training speech used is different as
is the number of different sentence texts contained in the training script. The 109 speaker
model is trained on a total of 4360 utterances drawn from 2800 sentence texts. The 12
speaker model is trained on 7200 utterances drawn from only 600 sentence texts. While the
additional speech may benefit the 12 speaker condition, the greater richness of the sentence
texts may help the 109 speak,- model. The effect of the additional sentence texts can be

]= seen in the different numbers of triphone contexts observed in the two training scripts: 5000
triphones for 600 sentences vs. 7000 for the 2800-sentence script.I
Discussion of SI Results

We have observed that the forward-backward algorithm freely redefines some of the phonemes
to model peculiarities of a given speaker. If we constrain all speakers to a common alignment,

the training procedure must make a compromise between these speaker-specific adjustments.
Both forward-backward and triphone coocurrence smoothing are arguably speaker-specific
procedures - they work best when the training distributions are generated by a single source.
Some compromise must be made for SI recognition, where the training is not homogeneous
and the test distribution is, by definition, different than the training. It appears, from these3 results, that the least damaging compromise may be to delay pooling of the data/models until
the last possible stage in the processing.

5l Such a simple SI paradigm has several attractive attributes. It makes the data collection
effort easier. It is trivial to add new training speakers to the SI model; no retraining is
required. Therefore the system can easily make use of any speakers who have alreadyIcommitted to giving enough speech to train a high-performance SD model. There is a
large payoff for being one of the training speakers in this scenario - highly accurate SD

performance. In contrast, there is no benefit for being a training speaker for the 109 speakerIg model. Finally, by delaying the stage at which the data or model parameters are pooled,
new opportunities arise to use speaker-specific modeling approaches such as the multiple-3 reference adaptation procedure described in Chapter 4.

3
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* Chapter 4

Speaker AdaptationI

I During the previous three-year eifort, we developed a technique for speaker adaptation in
which we modified the HMM parameters of one (reference) speaker so that they were appro-
priate for another (target) speaker, using only 2 minutes of speech from the target speaker.
The technique uses a probabilistic spectral mapping from one speaker to another. The map-
ping is implemented using a probabilistic speaker transformation matrix. We also developed
a supervised, text-independent method for estimating the matrix using the Forward-Backward

algorithm.

At the end of the previous effort, we devised a new, more effective technique for estimat-
ing the speaker transformation matrix. The estimation technique assumes that the sentences
in the 2 minutes of speech from the target speaker were also spoken by the reference speaker.
(Thus the algorithm is text-dependent.) Then it aligns each pair of corresponding utterances
using dynamic time warping (DTW) to estimate the transformation matrix. We also made
several improvements to the basic speaker adaptation algorithm. At this time, the recognition
accuracy that we observe when the speech of only the reference speaker is adapted to the
target speaker is equivalent to that for a speaker-independent system that has been trained
on over 100 speakers. Thus, the speaker adaptation scenario represents a dramatic savings
in the total effort required to acquire acceptable speech recognition performance in a new
recognition domain. In addition to the significant economy argument, speaker adaptation can
overcome the very high error rate that occurs when a speaker-independent model is tested
on speakers with strong accents or in acoustic environments that are different from those in
the training. Our work in single-reference speaker adaptation is described in Section 4.1.

-I In Section 3.2 we described a new paradigm for speaker-independent training in which
the speech of only a dozen speakers is used for training. During this effort, we have also3 developed a way to use this paradigm as a basis for speaker adaptation from a speaker-
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independent training set. In this case, by performing the speaker adaptation we can reduce3the error rate by 45% relative to the speaker-independent starting point. Our new methods
for multiple-reference speaker adaptation are described in Section 4.2.

I
4.1 Single-Reference Speaker Adaptation

Reference -------
Speech F-B Reference Model

Training
------- NormaliAdapted

Normalized ' Reference

Target I Feature Speech Spectrum Model• Spech !Norm •Mapping "

3Figure 4.1: Baseline speaker-adaptation system.

Our baseline speaker-adaptation system consists of two distinct components, shown in solid-
line boxes in Figure 4.1. Both of these estimate a non-parameteric transformation between
the reference and target speaker, with the goal of making one of them 'look' like the other.

5 The feature normalization component estimates a deterministic transformation which is
applied to the speech features of the reference speaker. DTW is used to derive an alignment
between the spectral feature vectors of a given pair of utterences from different speakers.
Corresponding subpopulations of feature vectors across the two speakers are defined by the
alignment and by a vector-quantizer (VQ) labeling of the reference speaker's speech. The
means of the corresponding subpopulations are then made identical by shifting the feature
vectors of the target speaker. This transformation can be applied iteratively since each
application of DTW and feature translation reduces (or leaves unchanged) the mean square
error of the alignment. After this transformation, the speech features of the reference speaker
are superimposed upon the feature space of the target speaker. The normalization procedure
is described in detail in [101.

The spectrum mapping component estimates a probabilistic transformation which is ap-
plied to the reference HMM observation densities. DTW is again used to define a pair-wise
correspondence between the VQ spectra of the reference and target speakers' speech. VQ
co-occurrence probabilities are estimated from frequency counts of the co-occurring VQ pairs
in the alignment and are accumulated into a transformation matrix. The reference HMM
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(discrete) observation densities are then multiplied by this matrix. After this transformation,
the adapted reference model can be used as an approximation to a well-trained HMM for
the target speaker. The spectrum mapping procedure is described in [9].

3 The reference model is created as usual by using the 'forward-backward' algorithm to
train context-dependent phonetic models from the SD data of the reference speaker. This is
indicated by the dashed-line box in Figure 4.1.

The basic technique for speaker adaptation has remained fixed over most of this contract.
That is, we still use the probabilistic spectral mapping method. We have tried several other
methods, but have, as yet, not found any to work as well. However, we have made several
improvements in the performance of our adaptation method. These improvements derived
from using additional speech parameters, from more accurate estimation techniques, and
from an improved distance metric for aligning the adaptation and reference speech.

One of the fundamental aspects of the algorithm involves aligning the speech parameters
of two different speakers. The speech parameters are quite different to start. Therefore, it is
possible that the alignment found using a simple distance measure is not correct. That is, it
does not actually align corresponding phonetic events in the two sentences. We developed an
iterative alignment procedure to alleviate this problem. The algorithm is described in [10].
The first alignment serves to define a nonparametric deterministic parameter normalization
between the two speakers. This normalization is used to make the parameters of the two
speakers more similar. Then we perform a second iteration of alignment. (We showed in the
paper that the algorithm is guaranteed to converge.) After we have determined the correct
alignment, we use the usual technique for estimating the speaker transformation matrix. We
reported a reduction in the recognition error rate resulting from the improved alignment.

When we changed the system to use the derivatives of the cepstral parameters in addition
to the steady state parameters, we observed the expected improvement in performance that
had been observed for speaker-dependent and speaker-independent recognition. However,

Swe also observed that if we used the derivatives in the distance measure used for aligning
the pairs of utterances, the alignment between corresponding sentences was significantly
improved, resulting in further improvement in recognition accuracy.

The two improvements above led us to believe that the distance measure used during
alignment should be considered more carefully. In addition, we needed a way to normalize
the measure in order that we could use both steady-state cepstra and their derivatives together
in the same measure, even though the derivatives have a much smaller dynamic range.

--I First we tried normalizing each parameter so that it had unit variance. This allowed us
to combine the two different kinds of parameters. However, we reasoned that the lower
numbered cepstra and their derivatives which specify the overall spectral shape should carry
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more weight than the higher parameters which specify the fine detail in the spectrum. After

examining several proposed metrics, we normalized each cepstrum parameter such that its
variance was inversely proportional to its parameter number. For example, the normalized
variance of the 1st cepstrum was 1, while the normalized variance of the 2nd cepstrum was
1/2, and the normalized variance of the 14th cepstrum was 1/14. We performed the same
normalization on the derivative parameters. We found that the resulting weighted distance3 metric resulted in better alignment and therefore lower error rate.

Finally, we considered the mathematics of the estimation of the transformation matrix.
When we considered the corresponding spectra along the best alignment path between the
two sentences, we reasoned that we must be careful to take into account how many frames
from one sentence were aligned against the other. For example, if the best path aligned
two frames from the target sentence against one frame of the reference sentence, then we
only added 1/2 to each of the corresponding bins of the transformation matrix. We found
that making sure that we obtained the correct maximum likelihood estimate of the matrix

Iresulted in some reduction of the error rate.

As a result of the improvements described above the word error rate using models
I adapted from a single speaker has been reduced to 5% on the DARPA corpus, depending

on the amount of speech available from the reference speaker. This level of accuracy is
essentially equivalent to the best speaker-independent accuracy, at a small fraction of the3 start-up cost.

14.2 Speaker Adaptation Using Multiple Reference Speakers

I In recent years several researchers have demonstrated speaker-independent (SI) recognition
using essentially the same recognition algorithms used for speaker-dependent recognition,
but with a model derived by simply pooling the training speech of over 100 speakers (using
more than 4000 utterances) as if it all were produced by one speaker. While the recognition
accuracy is not as high as for speaker-dependent models, pooling the training data from
several speakers obviously makes the system capable of dealing better with speech from
new speakers.

3In an effort to improve on SI performance, we have considered several ways of adapting
models derived from several speakers to be useful for a new speaker. We describe two
methods for adaptation from multiple reference speakers. The first method compacts the

speech parameters of each of the reference speakers so that they are more similar, and then
adapts the target speaker to this compacted group of speakers. The second method adapts
the HMM model from each of the reference speakers to the target speaker and then averages
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the adapted models. The second method was found to result in much larger improvement.

34.2.1 Compacted Model

Our basic speaker adaptive (SA) approach can be used with a pool of many reference speakers
if we can overcome two obvious problems. Our baseline system estimates a transformation
between two speakers based on a detailed correspondence between their short-term spectra. It
is not obvious how to generalize the transformation to make the correspondences between the
target speaker and a pool of reference speakers. Also, we know that training data pooled from
many speakers yields a model that has very broad (less discriminating) distributions compared
to those produced by speaker-dependent training. Since our adaptation procedures also
smooth the reference model, we expect that a straightforward application of them to a pooled
speaker-independent model will fail to yield improvements due to excessive smoothing.

I One solution to these problems is to normalize the speech features of the many reference
speakers to a single, common space prior to pooling. This approach attempts to make all the
reference speech appear to be from the same virtual speaker. Also, by making the feature
space of the pooled speech more compact, the normalized speech should yield a model with
less broad (more discriminating) distributions.

Since the feature normalization component of our system is designed to superimpose the
speech features of one speaker onto another's, it can be used to transform the features of

Smany reference speakers to a single speaker whom we designate the prototypical reference
speaker. Figure 4.2 illustrates this approach. The feature normalization is used repeatedly
to define transformations between each reference speaker and the prototypical reference
speaker. The normalized reference speech is then pooled and trained as if it were produced
by a single speaker.

3 The target speaker is also normalized to the common feature space. A spectrum mapping
is then estimated between the target and the prototypical speaker and the transformation is
applied to the normalized-pooled reference model.

Experimental Conditions

3 We ran an experiment using the SI portion of the DARPA Resource Management database
as the pool of reference speakers. 40 utterances from each of 109 training speakers were used
as training material for this experiment. 10 to 15 utterances from each speaker were drawn
from the same scripts used for the prototypical reference speaker's data. This amounted to
30-45 seconds of adaptation speech for each of the training speakers.
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Figure 4.2: Speaker adaptation from a normalized-pooled reference model.

3 For the prototypical reference speaker, we used speech collected at BBN from speaker
RS; the same speaker that is used as the reference in the baseline system. 600 sentences from
the SD training script were available from RS as well as the 10 designated 'rapid adaptation'
sentences.

The test speakers used are taken from the SD portion of the database so that a direct
comparison with our SD results can be made. The database contains 12 such speakers. We
did not have adaptation material for speaker ERS at the time of this writing, so this speaker
has been omitted from this test, leaving 11 test speakers.

Condition - Xspkr Norm Map Norm
# Ref Spkrs _ Only Only + Map

1 Proto 99 34 8 6.7
109 SI 7.1 84
110 SI + Proto 14.2 6.3

Table 4.1: Comparison of single and multiple reference speaker-adaptation systems. Num-
bers shown are perent word error.
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In Table 4.1 we show imtial results. The standard word-pair grammar (perplexity = 60),3 defined as part of the database for evaluation purposes, was used in all cases.

The condition labeled, Xspkr, signifies that the cross-speaker model (made from one or3 many speakers not including the target) is used directly and without modification during
recognition of the target speaker.

For the condition, Norm Only, the cross-speaker model is used for recognition as above,
but the test speech of the target speaker is transformed first, using the feature normalization
estimated from the adaptation speech. The transformed test data is then quantized using the
cross-speaker codebook. This condition allows us to see the effect on performance for the
feature normalization component alone.

3 The third condition, denoted by Map Only, indicates that the cross-speaker reference
model is transformed by the spectrum mapping procedure before being used in recognition.
The test data used is the original unnormalized speech quantized by the target codebook.

This condition permits us to see the impact of the spectrum mapping component alone.

The final condition indicates that both transformations are used. For this condition, the
feature normalization is used only to improve the alignment for estimating the spectrum
mapping. Again, the test data used is the original unnormalized speech.

3 The table contains results for reference models made from three different training corpora.
The label, 1 Proto, indicates the baseline single reference speaker system of Figure 4.1. The
109 SI pooled model is made from the 109 training speakers defined by the database. The
110 SI + Proto model also includes speech from the prototypical reference speaker. The
system shown in Figure 4.2 was used to create the two pooled models.

* Note that there are two normalization stages in the pooled reference speaker systems:
normalization of the many references, and normalization of the target speaker. In Table 4.1
the labeled conditions refer to the target normalization only. For all but the Xspkr condition

the pooled models are made from normalized reference speech.

* Discussion

In the first row of Table 4.1, results for the single reference speaker baseline system are
given. The cross-speaker performance is degenerate at approximately 99% word error (1/3

of the words were correctly recognized but many insertion errors were made). Using the
feature normalization reduces the error by about a factor of 3. This result is averaged over
only 6 of the 11 test speakers used in the rest of the table. Using only the spectrum mapping,

* however, reduces the cross-speaker error by more than a factor of 10. Despite their unequal
power, the two transformations used together appear to improve over their individual results,
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yielding a 15-fold reauction m error rate over the cross-speaker performance.

It should be noted that the system used for the Map Only result did not use the feature
pre-conditioning described earlier, so it is possible that the spectrum mapping alone may be3 adequate for the single reference system.

The second row of the table shows results for the 109 reference speakers from the SI3 database. The result for simple pooling (Xspkr) also improves 15-fold over the single cross-
speaker performance. Clear;y, pooling the speech of many speakers is powerful but by itself

it performs no better than using a speaker transformation on a single reference speaker.

Compacting the 109 speakers and the target speaker by feature normalization has hurt
performance somewhat as shown in the Norm Only condition. Note that this model does not
contain the prototypical reference speech which defined the common space during estimation
of the transformations. Still, we would expect a compacted model to do better than a simply
pooled one. In fact the overall average probability, given the model, for the compacted
data is only slightly higher than for the simply pooled (SI) data and is considerably less
than usually achieved for SD training. This result indicates that the feature normalization
procedure destroys some information, and in this case, is not powerful enough to overcome

that loss.

The last two conditions for the 109 reference model have not been completed at this
time. We do not expect spectrum mapping to improve much, however, with the prototypical
reference omitted from the training data.

I The last row of the table, labeled 110 SI + Proto, displays results achieved from a model
which contains the prototypical speaker in addition to the 109 SI speakers. For the simply

pooled condition, performance is much worse than that of the 109 speaker model. This is
not surprising given that speech from the prototypical speaker dominates the training data
(1/8 of the data) and that this speech, when used in a single cross-speaker reference model,

* yields degenerate performance.

For the Norm Only condition, the 110 speaker model gives marginally better performance
than the best result for the other two training corpora. As in the 109 speaker model, the
overall average probability of the data was closer to the pooled SI model than to the SD
model. It is possible that the feature normalization procedure is more sensitive to the3 amount of data used to estimate the feature transformation than we anticipated. Recall that
we typically use 2 minutes of adaptation speech for the single reference speaker system but
we are only using 30-45 seconds of speech for the pooled data.

We have also attempted to use the same SI corpus of over 100 speakers for speaker

adaptation as reported in [18]. In this work, we estimated a deterministic transformation on

_I 46



U
I
3 Report No. 7528 BBN Systems and Technologies

the speech parameters of each of the training speakers which projected them onto the feature
space of a single prototypical training speaker. We then trained on all of the transformed
speech as if it came from a single speaker. The target speaker was similarly projected onto the
prototypical speaker and recognition proceeded using the prototypical model. This procedure
reduced the word error rate by 10% compared to the SI result; a minor improvement for a
significant increase in the complexity of the scenario. We believe that this method did no

better because the feature transformation was not powerful enough to superimpose a pair
of speakers without significant loss of information. This resulted in a prototypical model
whose densities were not significantly sharper than the comparable SI model made from the
original data.

1 4.2.2 Adaptation from 12 Speakers

I Our experience with the 109 corpus led us to rethink our approach to speaker adaptation
from multiple reference speakers.

SWe already have a powerful speaker adaptation procedure which effectively transforms a
single well-trained SD reference model into an adapted model of the target speaker [9]. The
transformation is estimated from a small amount of adaptation data (40 utterances) given
by the target speaker. The approach is powerful for two reasons: first, the estimate of
the probabilistic spectral mapping between two speakers is robust and generalizes well to
phonetic contexts not observed in the adaptation speech, and second, the transformation can
be applied to the well-estimated, discriminating densities of the SD reference model without
undue loss of detail.

3 A natural extension of this approach to multiple references would be to combine the
parameters of several SD models after they had been independently adapted to the same
target speaker. We can issume from our 12 speaker SI experiments that the transformation
will perform better if estimated independently between each speaker-pair in turn rather than
from a pooled dataset, since the transformation is a speaker-pair-specific operation. We also
know that we can successfully combine the multiple adapted models by averaging the model
statistics.

4.2.3 Experimental Results

* Test Conditions

3 In these experiments, we have used the 12 RM1 speakers as test speakers (as well as
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references in some experiments). The test data consists of 25 different utterances for each
speaker. The entire test set is composed of 300 utterances and contains more than 2400
word tokens. In all cases, the first 40 sentences of the common training material (about 2

* minutes of speech) is used as adaptation data.

Results

3 To establish a baseline, we used each of the four RM2 speakers with 30 minutes of
training as single references. In Table 4.2, we show an average performance of 6.5%
word error rate for all combinations of the 4 references and the 12 test speakers. The
sample standard deviation of the individual target speaker results is 4.3%, indicating the
wide variation in performance over the test speakers, which ranged from 0.6% to 18.7%.

1 Condition % Word Err Std. Dev. I
Single reference baseline 6.5 4.3
S11 reference, uniform wgts 4.6 3.0
I 11 reference, estimated wgts 4.1 2.5.

D Table 4.2: Comparison of adaptation performance from single and multiple r-ferences.

I Two additional results are shown in Table 4.2 for averaging the adapted models of
11 reference speakers. For these experiments, we jackknifed over the 12 RMI speakers3 holding out one test speaker at a time. Each of the 11 reference models was trained using
30 minutes of speech. The multi-reference model made with uniform weights shows a
substantial reduction in both word error rate and variablility compared to the baseline. The
model using weights estimated from the adaptation data improved further, resulting in a 37%
overall reduction in error rate compared to the baseline. Most of the improvement gained
by weighting the adapted reference models is due to a substantial improvement in the worst
speaker.

In another set of experiments, we investigated the effect of using more than 30 minutes
of speech for training each reference model. As shown in Table 4.3, repeating the singlereference baseline with 2 hours of speech for each reference speaker yields a 10% reduction

in word error averaged over all combinations of reference and target. When the 4 RM2
reference models are used in weighted combination, the error is further reduced by 25%,
equalling the error rate of the 11 reference result given above. Note, however, that the 4
reference model has not corrected the problem with the outlier speaker as indicated by the
deviation in individual speaker performance.

Using 2 hours of data instead of 30 minutes to train the reference models did improve

48

I



3 Report No. 7528 BBN Systems and Technologies

I Condition I % Word Err Std. Dev.

Single reference baseline 5.8 3.33 4 reference, estimated wgts 4.2 3.7

Table 4.3: Adaptation performance with references trained from 2 hours of data.I
the average results for every reference speaker. However, only 60% of the target speakers
improved while 25% actually degraded. This led to a small improvement overall - only
12% error reduction for a quadrupling of the reference training data. We have concluded
that 30 minutes of training data from each reference speaker is adequate for this task.

In Table 4.4, we show the RM2 single reference baseline results again, but separated into
the four possible combinations of gender pairs. It is notable that the gender of the reference
speaker has little effect upon performance, and no effect on the female test speakers. For
this test set, the male speakers tend to be somewhat worse speakers on average.

I Genders of Speaker Pair
Gender of Target Same Opposite

3 Female 4.0 4.2
Male 6.5 7.5

Table 4.4: Effect of reference gender on single reference performance.

I
DiscussionI
To get a sense of how well our basic adaptation procedure models the difference between two
speakers, we can compare the single reference adaptation results to cross-speaker recognition
(train on one speaker, test on another, without adaptation). Measured on the same test set as
was used in Table 4.2, the cross-speaker error rate is quite bad - about 77%. By comparison,
our baseline single-reference performance is 12-fold better.

We discovered that this result is misleading, however, since the effect of cross-speaker
gender is very strong in this case. Repeating the experiment with two cross-speaker models,
one from each gender, we found that matching genders between training and test speakers
reduces the error rate to 15%. Furthermore, we found that the correct gender model could3 be chosen automatically, with no degradation in performance, by comparing the probability
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of an utterance as measured by each of the two models. So our baseline adaptation proce-
dure, which is implicitly gender-independent, improves over gender-dependent cross-speaker
performance by better than a factor of two.

We have shown that we can increase this improvement over cross-speaker recognition to
nearly a factor of four by using training speech from multiple references. It is natural thento compare this performance with an analogous cross-speaker model made from multiple

training (reference) speakers.

I 4.3 Conclusion

3 We have shown that our baseline speaker adaptation algorithm gives consistent performance,
on a 1000-word continuous speech recognition task, across a wide variety of reference
speakers including speakers of opposite gender from the target. Needing only 600 utterances
to train the reference speaker, this approach provides an economical and 1 gistically simple
way to bring up new users quickly to a high level of performance or an arbitrary task3 domain.

In addition, we have demonstrated a speaker adaptation procedure using multiple ref-
erence speakers which performs much better than adaptation from a single reference. The
nearly 40% reduction in error rate due to the use of multiple references is larger than previ-
ously reported in the literature on speaker adaptation.

5
I
U
I
I
U
3 50

I



I

I '

3
I

BibliographyI
[1] S. Austin, C. Barry, Y-L. Chow, A. Derr, 0. Kimball, F. Kubala, J. Makhoul, P.

Placeway, W. Russell, R. Schwartz, and G. Yu (1989) "Improved HMM Models for
High Performance Speech Recognition," Proceedings of the DARPA Speech and Natural3 Language Workshop, October, 1989.

[2] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer (1986) "Maximum Mutual
Information Estimation of Hidden Markov Model Parameters for Speech Recognition."

IEEE Int. Conf Acoust., Speech, Signal Processing, Tokyo, Japan, 1986, Vol 1, pp.
49-52, Paper No. 2.3.1.

[3] L.R. Bahl, P.F. Brown, P.V. de Souza, and R.L. Mercer '1988) "A New Algorithm for
the Estimation of Hidden Markov Model Parameters", IEEE Int. Conf. Acoust., Speech,3 Signal Processing, New York, New York, April, 1988, pp. 493-496, Paper 11.2.

[4] L.Baum (1972) "An Inequality and association Maximization technique in Statistical
Estimation for Probabilistic Function of Markov Processes," Inequality, Vol m, 1972,
pp 1-8.

[5] Bellagard, J. and D. Nahamoo (1989) "Tied mixture continuous parameter models for

large vocabulary isolated speech recognition", IEEE ICASSP89.

[6] Brown, P. (1987) "The Acoustic-Modeling Problem in Automatic Speech Recognition",
PhD Thesis, CMU, 1987.

[7] Chow, Y-L. and Schwartz, R.M. (1990) "The N-Best Algorithm: An Efficient Proce-
dure for Finding Top N Sentence Hypotheses", Proceedings of the DARPA Speech and
Natural Language Workshop, Cape Cod, October 1989.

[8] G. Doddington (1989) "Phonetically Sensitive Discriminants for Improved Speech

Recognition," IEEE ICASSP-89, pp. 556-559.

3 [9] Feng, M., F. Kubala, R. Schwartz, J. Makhoul (1988) "Improved Speaker Adaptation
Using Text Dependent Spectral Mappings", IEEE ICASSP-88, Apr. 1989, paper S3.9.3 51

I



Report No. 7528 BBN Systems and Technologies

[10] Feng, M., R. Schwartz, F. Kubala, J Makhoul (1989) "Iterative Normalization for
Speaker-Adaptive Training in Continuous Speech Recognition," IEEE ICASSP-89, pa-
per S 12.4.

[111 Furui, S. (1986) "Speaker-Independent Isolated Word Recognition Based on Empha-
sized Spectral Dynamics," IEEE ICASSP-86, pp. 1991-1994.

[121 Furui, S. (1989) "Unsupervised Speaker Adaptation Method Based on Hierarchical
Spectral Clustering", IEEE ICASSP-89, May 1989, paper S6.9.

[13] Gupta, V.N., Lennig, M., Mermelstein, P. (1987) "Integration of Acoustic Information
in a Large Vocabular) Word Recognizer", IEEE ICASSP-87, Apr. 1987, pages 697-700.

[141 Hattori, H., S. Nakamura, K. Shikano (1990) "Supplementation of HMM for Articula-
tory Variation in Speaker Adaptation", IEEE ICASSP-90, Apr. 1990, paper S3.6.

[15] Huang, X.D. and M.A. Jack (1989) "Semi-continuous hidden Markov models for speechI recognition", Computer Speech and Language, Vol 3, 1989.

[161 Jelinek, F., Mercer, R.L. (1980) "Interpolated Estimation of Markov Source Parameters
from Sparse Data" in E.S. Gelsema and L.N. Kanal (editor), Pattern Recognition in
Practice, pages 381-397, North-Holland Publishing Company, Amsterdam, 1980.

[17] Kohonen, T., G. Bina, and R. Chrisley (1988) "Statistical Pattern Recognition with
Nerual Networks: Benchmarking Studies," IEEE Proc. of ICNN, Vol. I, pp. 61-68, July
1988.

[18] Kubala. F., R. Schwartz, C. Barry, "Speaker Adaptation from a Speaker-Independent
Training Corpus", IEEE ICASSP-90, Apr. 1990, paper S3.3.

[19] Lee, K. (1988) "Large-Vocabulary Speaker-Independent Continuous Speech Recogni-
tion: The SPHINX System", PhD dissertation, Carnegie-Mellon University, Apr. 1988,
CMU-CS-88-148.

j20] Lee, K., H. Hon, M. Hwang (1989) "Recent Progress in the Sphinx Speech Recognition
System", Proceedings of the DARPA Speech and Natural Language Workshop, Morgan
Kaufmann Publishers, Inc., Feb. 1989, pp. 125-130.

[21] Makhoul, J., S. Roucos, and H. Gish (1985) "Vector Quantization in Speech Coding",
- Proc. IEEE, Vol. 73, No.11, pp.1551-1588.

[22] McDermott, E. and S. Katagiri (1989) "Shift-Invariant, Multi-Category Phoneme
Recognition using Kohonen's LVQ2," IEEE ICASSP-89, pp. 81-84.

I 52
I



I
I
3 Report No. 7528 BBN Systems and Technologies

[23] A. Nadas, "A decision-theoretic formulation of a training problem in speech recog-
nition and a comparison of training by unconditional verus conditional maximum
likelihood," IEEE Transactions on Acoustics, Speech and Signal Processing, Volume3 ASSP-31, Number 4, pages 814-817, August 1983.

[241 Paul, D.B.. personal communication, Feb. 1988.

3 [251 Nakamura, S. and K. Shikano (1989) "Speaker Adaptation Applied to HMM and Neural
Networks", IEEE ICASSP-89, May, 1989, paper S3.3.

[261 Price, P., Fisher, W.M., Bernstein, J., and D.S. Pallett (1988) "The DARPA 1000-Word
Resource Management Database for Continuous Speech Recognition," IEEE Int. Conf.
Acoust., Speech, Signal Processing, New York, NY, April 1988, pp. 651-654.

I [27] Rigoll, G. (1989) "Speaker Adaptation for Large Vocabulary Speech Recognition Sys-
tems Using Speaker Markov Models", IEEE ICASSP89, May, 1989, paper S1.2, pp.

* 5-8.

[28] Rtischev, D. (1989) "Speaker Adaptation in a Large-Vocabulary Speech Recognition3 System", Masters thesis, Massachusetts Institute of Technology, Jan. 1989.

[29] Schwartz, R.M., Chow, 0., Roucos, S., Krasner, M., and J. Makhoul (1984) "Im-
proved Hidden Markov Modeling of Phonemes for Continuous Speech Recognition",
Proceedings ICASSP 84, paper 35.6, March, 1984.

[301 Schwartz, R.M., Chow, Y., Kimball, 0., Roucos, S., Krasner, M., and J. Makhoul
(1985) "Context-Dependent Modeling for Acoustic-Phonetic Recognition of Continuous
Speech", Proceedings ICASSP 85, pp. 1205-1208, March, 1985.

[31] Y.L. Chow, R. M. Schwartz, S. Roucos, O.A. Kimball, P.J. Price, G.F. Kubala, M.O.
Dunham, M.A. Krasner, and J. Makhoul (1986) "The Role of Word-Dependent Coar-
ticulatory Effects in a Phoneme-Based Speech Recognition System", IEEE Int. Conf.
Acoust., Speech, Signal Processing, Tokyo, Japan, April 1986, pp. 1593-1596, Paper
No. 30.9.

3 [32] Schwartz, R., Y. Chow, F. Kubala (1987) "Rapid Speaker Adaptation using a Proba-
bilistic Spectral Mapping", IEEE ICASSP-87, Apr. 1987, paper 15.3.1.

3 [33] R. Schwartz, Y-L. Chow, A. Derr, M-W. Feng, 0. Kimball, F. Kubala, J. Makhoul, M.
Ostendorf, P. Price, and S. Roucos (1988) "Statistical Modeling for Continuous Speech
Recognition," BBN Report No. 6725, Bolt Beranek & Newman Inc., Cambridge, MA,1 February 1988.

I 53
I



I
I

Report No. 7528 BBN Systems and TechnologiesI
[341 Schwartz, R., 0. Kimball, F. Kubala, M. Feng, Y. Chow, C. Barry, J. Makhoul (1989)'

"Robust Smoothing Methods for Discrete Hidden Markov Models", IEEE ICASSP-89,
May 1989, paper SlOb.9.

[35] Schwartz, R. and Y.L. Chow (1990) "The N-Best Algorithm: An Efficient and Exact
Procedure for Finding the N Most Likely Sentence Hypotheses", ICASSP-90, April
1990, Albuquerque S2.12, pp. 81-84.

3 [361 K. Shikano, K.F. Lee, and R. Reddy (1986) "Speaker Adaptation Through Vector
Quantization", IEEE Int. Conf Acoust., Speech, Signal Processing, Tokyo, Japan, April
1986, pp. 2643-2646, Paper No. 49.5..

[371 K. Sugawara, M. Nishimura, K. Toshioka, M. Okochi, and T. Kaneko (1985) "Isolated
Word Recognition Using Hidden Markov Models", IEEE Int. Conf. Acoust., Speech,3 Signal Processing, Tampa FL, March 1985, pp. 1-4.

[381 Tseng, P., Sabin, M., and E. Lee (1987) "Fuzzy Vector Quantization Applied to Hidden
Markov Modeling", IEEE ICASSP-87, April, 1987, paper S15.5.

I
I
I
I
I
I
I
I

I


